

Bio-Lasers

An Emerging Field Bridging Photonics & Biomedicine

Yu-Cheng Chen, PhD

What is a Laser?

Major Components

- 1. Pump source
- 2. Gain media
 - -Crystal, dyes, gas
 - -semiconductor
- 3. Optical cavity
 - -Fabry-Perot (mirrors)
 - -photonic crystals
 - -ring-resonators

xternal energy source

Wide applications in medicine, communications, imaging, industry, electronics, and military.

Concept of Biolasers

Optical cavity:

FP mirrors, ring resonators

- Utilize laser as the sensing signal
- Amplification of subtle changes

Gain media:

biologically related materials

Concept of Bio-laser

Any fluorescent materials in fluorescence-based detection can potentially be used.

Fluorescence vs. Laser-based Detection

- Threshold behavior
- Narrow linewidth
- Strong intensity
- High controlability
- High contrast and SNR

Overview- Biomolecular-based Biolaser

DNA biolaser for analysis of biomolecular interactions Y. Sun, X. Fan, *Angewandte Chemie* (2012)

Biolasing in bacteria. Jonáš, et al. *Lab Chip* (2014) Lasing with chlorophylls. Chen, et al. *Lab Chip* (2016)

FRET protein biolasers. Q. Chen, et al. *Lab Chip* (2013) ELISA biolasers. X. Wu, et al. *Nat. Commun.* (2014)

Biomaterial synthesized micro-biolaser, Ta, et al. Adv. Opt. Matt. (2017) Biomaterial implantable biolaser, Humar, et al. Optica (2017)

Overview- Cellular-based Biolaser

Single cellular lasers. M. Gather, et al. Nat. Photon. (2011).

Wavelength (nm)

Intracellular microlasers. M. Humar, et al. Nat. Photon. (2015).

Aim: Bio-functional Laser-based Sensing. Imaging

Biomolecules

Sensing in live cells/ Networks/ tissues

Significance of cell/tissue-biolasers:

- Monitor/ Detect subtle biological transients in cells/tissue
- Improved signal-to-background ratio (contrast) and sensitivity
- Mimics real complex biological environment in body
- Highly sensitive on-chip biosensing/ biomedical imaging

Demonstration of Bio-Laser

Lasing on/off

First Application of Bio-Laser: Biosensing+ imaging Advanced biolaser device/systems
Imaging/ Sensing analysis

Recent Projects in Biolasers

- High sensitivity
- High contrast
- Narrow linewidth
- High resolution
- Lasing thresholds
- Controllability

- Optics: Super-resolution imaging, laser mode science, micro/nano laser devices.
- Biology: tissue engineering, single cell analysis, monitoring biological networks.
- Biomedicine: On-chip devices, cancer diagnosis, drug testing in tissues.

Outlook

Fundamental Science

The mechanism of biolaser
Biological significance of laser patter

Engineering of micro-nano lasers

Super-resolution imaging

BIOLASERS An Emergent Field

Technology Development

Advanced laser-imaging system

Biolaser-on chip devices

Integration with electronics

Wearable/implantable biolaser systems

Monitoring of cancer and neurological diseases

New Lab: Opening Positions in NTU!

Biolasers, Biomedical imaging, Biosensing devices

- Fully funded PhD scholarships
- Postdoctoral research fellows

Backgrounds with Photonics, Optics, Electrical Engineering, Biomedical, or Material Science are all welcome!